Find bases for the row, column and null spaces of the following matrices. Verify the Rank-Nullity Theorem.
a. A=12101−1130Row Basis:[1,0,1],[0,1,1] (found by REF)
Column Basis:[1,2,1],[0,1,−1]x1+x3=0x2+x3=0
Let x3=t, and t is a real number
x1=−tx2=−tx3=tNull Space Basis:[−1,−1,1]
b. A=−1224−483−42028rref(A)=100010−12102210Row Basis:[1,0,−1,2],[0,1,21,21]Column Basis:[−1,2,2],[4,−4,8]x1−x3+2x4=0x2+21x3+21x4=0
Let x3=s, x4=tx1=s−2tx2=−21s−21tx3=sx4=tNull Space Basis:[1,−21,1,0],[−2,−21,0,1]