Parameter: Independent variable which both x and y depend on
An ordered pair with parameter t looks like: Parametric equations are useful to define things which are not explicitly functions
(t-1, (2t)+4)
((t^3)-3, (2t)+1)
Deparameterizing
Parametric equations can be rewritten into single equations Solve one equation for t Substitute into other equation
Parameterize
First, it is always possible to parameterize a curve by defining x(t)=t, then replacing x with t in the equation for y(t). If there was a limited domain, we would need to restrict the values of t
We have freedom over the second parameterization. Just make literally anything up. We only need to check that there are no restrictions of x - that the range of x(t) is all real numbers. It can be.. Since y=2x^2 - 3, we an substitute the above for x… Finally giving