1. Given z=1+i and w=2−3i, compute the following complex numbers.
a. z+w
z+w=(1+i)+(2−3i)=3−2i
b. 2z
2z=2(1+i)=2+2i
c. zw
zw=(1+i)(2−3i)=2−3i+2i−3i2=2−i+3=5−i
d. ∣z∣
∣z∣=12+12=2
e. zzˉ
zzˉ=(1+i)(1−i)=1−i2=1+1=2
f. w1
w1=2−3i1⋅2+3i2+3i=4+92+3i=132+3i
r=(3)2+12=2
θ=arctan(31)=6π
z=2(cos(6π)+isin(6π))
Compute z2
z2=[2(cos(6π)+isin(6π))]2=4(cos(3π)+isin(3π))=2+23i
3. Find the eigenvalues and associated eigenvectors of the matrix A=[23−22].
Eigenvalues
det(A−λI)=2−λ3−22−λ=(2−λ)2+6=λ2−4λ+10=0
λ=2±2i
Eigenvectors
For λ=2+2i:
[−2i3−2−2i][xy]=0⟹x=iy
Eigenvector: [1i]
For λ=2−2i:
[2i3−22i][xy]=0⟹x=−iy
Eigenvector: [1−i]
4. Find the rotation and dilation of A=[1−331].
Rotation and Dilation
A=[1−331]=[100010][cosθsinθ−sinθcosθ]
θ=arctan(1−3)=−arctan(3)
Dilation factor: 10, Rotation angle: −arctan(3)
5. Write A=PBP−1 where B is a rotation-dilation matrix A=[3−211].
Eigenvalues and Eigenvectors
det(A−λI)=3−λ−211−λ=(3−λ)(1−λ)+2=λ2−4λ+5=0
λ=2±i
For λ=2+i:
[1−i−21−1−i][xy]=0⟹x=(1+i)y
Eigenvector: [1+i1]
For λ=2−i:
[1+i−21−1+i][xy]=0⟹x=(1−i)y
Eigenvector: [1−i1]
Matrix P and B
P=[1+i11−i1],B=[2+i002−i]
A=PBP−1
6. Prove that λ=a+ib is an eigenvalue of the matrix A=[ab−ba].
Proof
det(A−λI)=a−λb−ba−λ=(a−λ)2+b2=0
λ=a±ib
Thus, λ=a+ib is an eigenvalue of A.