Compute the determinant by using row operations to put the matrix in to echelon form. a. A=[214−4][214−4]R2→R2−21R1[204−6]det(A)=(2)(−6)=−12 b. A=010122−242010122−242R1↔R21002124−22R3→R3−2R21002104−26det(A)=(1)(1)(6)(−1)=−6 (Note the -1 because of the row swap) c. A=120−3121321121−220120−3121321121−220R2→R2−2R1100−310132−3121−420R4→R4+3R1100010162−3181−423R2↔R31000110621−3812−43R4→R4−6R21000110021−3212−4−9R4→R4+32R31000110021−3012−4−335det(A)=(1)(1)(−3)(−35/3)(−1)=−35 (Note the -1 because of the row swap) 2. Verify Theorem 5.13 for A=[12−3−5]. det(A)=(1)(−5)−(−3)(2)=−5+6=1 a. R1↔R2B=[21−5−3]det(B)=(2)(−3)−(−5)(1)=−6+5=−1det(A)=−det(B) b. R1→3R1B=[32−9−5]det(B)=(3)(−5)−(−9)(2)=−15+18=3det(A)=31det(B) c. R2→R2−2R1B=[10−3−1]det(B)=(1)(−1)−(−3)(0)=−1det(A)=det(B) 3. Compute the determinant of A=11111122221233312344123471111112222123331234412347Ri→Ri−R1,i=2,3,4,51000011111112221123311236Ri→Ri−R2,i=3,4,51000011000111111112211125Ri→Ri−R3,i=4,51000011000111001111111114R5→R5−R41000011000111001111011113det(A)=(1)(1)(1)(1)(3)=3 4. Given det(A)=3 and det(B)=−2. a. det(AB)=det(A)det(B)=(3)(−2)=−6 b. det(B−1A)=det(B−1)det(A)=det(B)1det(A)=−21(3)=−23 c. det(B3AB−3)=det(B3)det(A)det(B−3)=(det(B))3det(A)((det(B))31)=det(A)=3 d. det((AB)TA−1)=det(AB)Tdet(A−1)=det(AB)det(A−1)=det(A)det(B)det(A)1=det(B)=−2