1. Compute the following projections
(a) proju1u2
The projection formula is:
projab=a⋅aa⋅ba
Given:
u1=[2−1],u2=[42]
Compute dot products:
u1⋅u2=2(4)+(−1)(2)=8−2=6
u1⋅u1=22+(−1)2=4+1=5
proju1u2=56[2−1]=[512−56]
(b) projv1v2
Given:
v1=02−1,v2=2−12
Compute dot products:
v1⋅v2=0(2)+2(−1)+(−1)(2)=−2−2=−4
v1⋅v1=02+22+(−1)2=4+1=5
projv1v2=5−402−1=0−5854
(c) projSv1, where S=span{v2,v3}
Using Gram-Schmidt:
- Let w1=v2 and define w2 as the component of v3 orthogonal to w1.
- Since v3⋅w1=0, we set w2=v3.
- Project v1 onto w1 and w2:
projw1v1=9−42−12=−9894−98
projw2v1=9522−1=910910−95
projSv1=−9894−98+910910−95=92914−913
2. Gram-Schmidt Process
(a) S=span{[12],[−11]}
- Let v1=u1=[12].
- Compute v2=u2−projv1u2:
v2=[−11]−51[12]=[−5653]
Orthogonal basis:
{[12],[−5653]}
3. Proof
Statement: If u∈S and v∈/S and v∈/S⊥, then u+v∈/S and u+v∈/S⊥.
Proof:
- Since u∈S, but v∈/S, their sum u+v cannot be in S because S is closed under addition only for its own elements.
- Since v∈/S⊥, there exists w∈S such that v⋅w=0.
- We compute:
(u+v)⋅w=u⋅w+v⋅w=0
✅ Hence, u+v∈/S and u+v∈/S⊥.
Let me know if you need any more adjustments!