1. Verify that is an eigenvector for the matrix and determine the associated eigenvalue. a.

Yes, becomes [4,4]

b.

Yes, becomes [-4,-2]

c.

Yes, becomes [0,3,6]

Copy

Problem 2

a.
Characteristic Polynomial: ( \lambda^2 - 6\lambda + 8 )
Eigenvalues: ( \lambda = 4, 2 )

b.
Characteristic Polynomial: ( \lambda^2 - \lambda - 6 )
Eigenvalues: ( \lambda = 3, -2 )

c.
Characteristic Polynomial: ( (\lambda - 1)^3 )
Eigenvalues: ( \lambda = 1 ) (multiplicity 3)


Problem 3

a.
Basis for Eigenspace (λ=2):
[ \left{ \begin{bmatrix}1 \ -1\end{bmatrix} \right} ]

b.
Basis for Eigenspace (λ=1):
[ \left{ \begin{bmatrix}0 \ 3 \ 2\end{bmatrix} \right} ]

c.
Basis for Eigenspace (λ=2):
[ \left{ \begin{bmatrix}1 \ 3 \ 0\end{bmatrix}, \begin{bmatrix}0 \ 1 \ 1\end{bmatrix} \right} ]


Problem 4

Characteristic Polynomial: ( (\lambda - 1)^2 )
Eigenvalues: ( \lambda = 1 ) (multiplicity 2)
Basis for Eigenspace:
[ \left{ \begin{bmatrix}1 \ 0\end{bmatrix} \right} ]


Problem 5

Characteristic Equation: ( \lambda^2 - \lambda - 6 = 0 )
Verification:
[ A^2 - A - 6I = \begin{bmatrix}0 & 0 \ 0 & 0\end{bmatrix} ]
Thus, ( A ) satisfies its characteristic equation.


Problem 6

Formula for Eigenvalues:
[ \lambda = \frac{(a + d) \pm \sqrt{(a - d)^2 + 4bc}}{2} ]


Problem 7

Proof:
Let ( A\mathbf{u} = \lambda\mathbf{u} ) and ( B\mathbf{u} = \mu\mathbf{u} ). Then:
[ AB\mathbf{u} = A(B\mathbf{u}) = A(\mu\mathbf{u}) = \mu\lambda\mathbf{u} ]
Hence, ( \mathbf{u} ) is an eigenvector of ( AB ).