1 Find the solution for the system

Matrify it:

Find Eigenvalues of A:

Find Eigenvectors of A:

For :

From the first row: , which can only be true and nonzero if

For :

From the first row: , which can only be true and nonzero if

From Differential Equations, we know the solution for this type of problem is of the form:

And so the general solution is:

2 Find the general solution for the system

y'_1 = 3y_1 + y_2 $$$$ y'_2 = -2y_1 + y_2 $$

A = \begin{bmatrix} 3 & 1 \ -2 & 1 \end{bmatrix}

2 \pm \sqrt{2 - 5}

\lambda = 2 \pm i

\begin{bmatrix} 3-(2 + i) & 1 \ -2 & 1-(2 + i) \end{bmatrix} = \begin{bmatrix} 1- i & 1 \ -2 & -1- i \end{bmatrix}

(1-i)v_1 + v_2 = 0 \to v_2 = -1(1-i)v_1

-2v_1 + (-1 - i)v_2 = 0

We can pick $v_1 = 1$, and that is guaranteed to be on an eigen-line:

v_2 = -1(1-i)1

v_+ = \begin{bmatrix} 1 \ -1 + i \end{bmatrix}

v_- = \begin{bmatrix} 1 \ -1 - i \end{bmatrix}

> Since the general solution for a system with complex eigenvalues $\lambda = \alpha \pm \beta i$ and eigenvector $\mathbf{v}$ involves exponentials with sine and cosine, we write: >

\mathbf{y} = e^{\alpha t} \left( C_1 \operatorname{Re}(\mathbf{v} e^{i\beta t}) + C_2 \operatorname{Im}(\mathbf{v} e^{i\beta t}) \right)

y_1 = e^{2t} (C_1 \cos t + C_2 \sin t)

y_2 = e^{2t} \left( C_1 (-\cos t - \sin t) + C_2 (\cos t - \sin t) \right)